Boosting Functional Regression Models with FDboost

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection by Boosting Regression Trees

A procedure for detecting outliers in regression problems is proposed. It is based on information provided by boosting regression trees. The key idea is to select the most frequently resampled observation along the boosting iterations and reiterate after removing it. The selection criterion is based on Tchebychev’s inequality applied to the maximum over the boosting iterations of ...

متن کامل

Interaction models for functional regression

A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids o...

متن کامل

Boosting SVM Classifiers with Logistic Regression

The support vector machine classifier is a linear maximum margin classifier. It performs very well in many classification applications. Although, it could be extended to nonlinear cases by exploiting the idea of kernel, it might still suffer from the heterogeneity in the training examples. Since there are very few theories in the literature to guide us on how to choose kernel functions, the sel...

متن کامل

Boosting for Regression Transfer

The goal of transfer learning is to improve the learning of a new target concept given knowledge of related source concept(s). We introduce the first boosting-based algorithms for transfer learning that apply to regression tasks. First, we describe two existing classification transfer algorithms, ExpBoost and TrAdaBoost, and show how they can be modified for regression. We then introduce extens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Software

سال: 2020

ISSN: 1548-7660

DOI: 10.18637/jss.v094.i10